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ABSTRACT: The present paper we give numerical solution of the Falkner-Skan equation for the study of two-

dimensional permeable steady boundary-layer viscous flow over a flat plate in the presence of non-Newtonian power 

law fluid which is represented by a power law model. The outer free stream velocity is defined in the form of a power-

law manner i.e., it varies as a power of a distance from the leading boundary-layer. Generalized similarity 

transformations are used to convert the the governing boundary layer equations in to a third order nonlinear differential 

equation which is famous Falkner- Skan equation for non-Newtonian fluid. This equation contains three flow 

parameters that is the Stream-wise pressure gradient (  ), the porous parameter ( ), and )(m  is the power law 

relation parrameter. The governing equations (nonlinear partial differential equations) have been converted to an 

equivalent nonlinear ordinary differential equation along with boundary conditions by means of which is solved using 

the Keller-box method. The results are obtained for velocity profiles, viscosity profiles and skin friction for various 

values of physical parameters and are discussed in detail. It is also found that the drag force is reduced for dilatant 

fluids compared to pseudo-plastic fluids. The Physical significance of the flow parameters are also discussed in detail. 
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I. INTRODUCTION 

   

The study of the boundary-layer flow of the Newtonian and non-Newtonian fluids provides valuable insights into 

industrial and technological applications. The Newtonian fluids such as air or water serve as a benchmark for most of 

the fluid flow behaviour. However, the behaviour of non-Newtonian fluids that are found many industrial applications 

is markedly different from those of the Newtonian fluids. Particulate slurries, coal in water, sewage sludge, inks and 

also multiphase mixtures i.e. oil-water emulsions, foams, gas-liquid dispersions are classified as non-Newtonian fluids. 
Generally, these fluids have the property of a variable viscosity. One class of material of considerable interest is that the 

effective viscosity depends entirely on the rate of shearing on the total flow rate. For example the most commonly used 

models for the variable viscosity are Ostwald-de Waele, Carreau rheological fluid, Carreau-Yasuda, etc which form a 

relationship between shear-stress and shear ratio. Because of such applications Acrivos et al (1960) and Schowalter 

(1960) have obtained equations for the boundarylayer flow of a non-Newtonian fluid particularly the numerical 

simulations of Acrivos et al (1960) show that thickness of the boundary-layer for the shear-thinning fluids is rather 

large compared to the shear-thickening fluids. It is further shown by Wu and Thomson (1996) that for modirate values 

of the Reynolds number, the boundary-layer equations for shear-thinning fluids provide accurate solutions. However, it 

is common practice that the boundary-layer forms when the Reynolds number is quite large. 

 

   For shear-thickening fluids, Andersson and Irgens (1998) have shown that the boundary-layer equations predict 

finite-width of the boundary-layer. To support these results Filipuss et al (2001) gave rigorous mathematical analysis 
that also predicts that same finite-width of the boundary-layer. On the other hand, a self-similar solution of the 

boundary-layer equations results into a overshoot in the velocity profiles. In a small region in the boundary-layer, these 

velocity profiles exceeds the velocity of the mainstream flow. Denier and Dabrowiski (2004) have even shown that 

these are double solutions for the boundary-layer equations when a self-similar form is assumed. They further showed 

that mode 1 solution represents forward flow while mode 2 or mode 3 solutions become increasingly oscillatory with 

alternatively forward and reverse regions of flows. Results of Griffiths (2017) shown that the effects of shear-thinning 

are to stabilize the boundary-layer flow. 
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In this paper, we consider the solutions of the Navier-Stokes equations under the limit of large-Reynolds number flow 

that exhibiting a power-law rheological model. Among the many possible non-Newtonian fluids, we have chosen the 

Ostawald-de Waele fluid which has a sound theoretical basis represents the complex viscosity and also it is often 

adopted to describe the rheological phenomena of the pseudo plastic fluids. [The boundary-layer equations admit the 

self-similar solutions since the mainstream flow outside the boundary-layer is approximated in power of the distance 

along the wedge wall.]. To solve the transformed boundary-layer equation numerically, we use the Keller-box method 

which is second-order accurate (Keller 1971) is used for full non-linear problem. This enables us to precisely identify 

the behaviour of the boundary-layer flow of the Ostwald-de Waele fluid. 

 

   Rest of the paper is organized as follows. In section 2, we set-up the problem in question in which the Cauchy 

momentum equations for non-Newtonian fluid. These reduce to the boundary-layer equations with inclusion of a non-
linear term in the equation which models the viscosity variations. The appropriate similarity transformations are also 

presented. Section 3 devotes the full numerical solution of the problem. Details of numerical Keller-box method are 

also presented. Final section presents important findings of the problem. Here we discuss all significant results for 

shear-thinning and Shear-thickening fluids in terms the velocity and viscosity shapes. Interestingly, the governing 

equation exhibits solutions for some parameter ranges. 

 

II. FORMULATION OF THE PROBLEM 

 

We consider the two-dimensional laminar boundary-layer flow of a viscous and incompressible fluid over a flat plate 

through porous media with a non-Newtonian power-law fluid. The positive x-coordinate is measured along the surface 

and the positive coordinate is measured normal to the x-axis in the outward direction towards the fluid. The 
fundamental equations for the flow of an incompressible fluid are the conservation of mass, linear momentum. We 

express these equations in the absence of body forces as follows 

 

                                                                                  ∙ q


= 0                                                                         (1) 

 

                                                  (2) 

 

 

where   is the fluid density, p  is the pressure,  k  is the permeability of the porous medium and   is the deviatoric 

stress tensor and is defined as  

 

                                                                                )(q                                                                         (3) 

 

where q is the second invariant of the strain-rate tensor. The shear rate q  is given by 
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The constitutive viscosity relation   for the Ostwald-de Waele power-law model is given by 

 

                                                                                
mK )(q                                                                   (6)  

 

where K  is the material constant and the index m represents the degree of shear thickening or thinning. We note that 

the Newtonian viscosity relationship is recovered for 1m . This parameter m  is an important index which 

subdivides the fluids into pseudo-plastic fluids or shear- thickening when 1m  and dilatants or shear-thinning for 
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1m . Bird et al (1987) can be referred to the through account of the rheological data on m . The hydrodynamics of 

other values of m shall be discussed later. The velocity vector ),( vuq  where u  and v  are the velocity components 

in x  and y directions respectively, and thus from (4), we have that 
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using (5). We consider the problem of two-dimensional, incompressible and steady state laminar boundary-layer flow 

over a wedge which moves with velocity )(0 xU w in a non-Newtonian power-law fluid. The positive x -coordinate is 

measured along the surface of the wedge with the apex as origin, and the positive y -coordinate is measured normal to 

the x-axis in the outward direction towards the fluid. Under these approximations, the governing equations for the 

steady two-dimensional laminar viscous flow of a non-Newtonian fluid. It is considered that the wedge moves with 

velocity )(xUw  along or opposite to the mainstream flows )(xU . Using the standard boundary-layer approximations 

and for large eR we have that 
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. Thus the system (1)-(2) can be written as 
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Similarely, we get 
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Where 
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To this end, we consider the two-dimensional incompressible flow of the non-Newtonian Ostwald-de Waele power-law 

fluid over a moving wedge which is moving wedge which is moving with velocity wU 0  either along the mainstream 

flow with  0U  or opposite to it. The Cartesian co-ordinate system is adopted to the wedge wall the inviscid main 

stream velocity 0U is assumed in the form of power of a distance that is 

 

                                                                         
n

o xUxU *

0 )(                                                                (12) 

 

where U  is a non-negative constant and n  is a constant related to the pressure gradient defined later in this section. 

Now, in order to derive boundary layer conditions, the physical quantities and variables specified in (1) and (2) are non-

dimensionlized 
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UL ,, and P  are certain reference values. These choices lead to define the Reynolds number for the Ostwald-de 

Waele power- law fluid as 
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    Where  is the kinematic viscosity, for a large Re  the flow divides in to near-field (boundary- layer region) and far 

field regions In the boundary-layer region of thickness of  , a very large velocity gradient exists. The boundary layer 

equations can be derived based on the approximations concern the following measurements. Let )(0 xU  be the 

velocity of the mainstream flow along x-direction outside the boundary layer. The key idea involved in making the 

boundary layer approximation is that the viscosity effects are dominant in the adjacent to the surface. If  is the 

thickness of the boundary layer, then L . Hence V is much smaller than U . Also other basic approximation is  
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 in meaning that the pressure p  in the boundary layer is a 

function of x  only (to the approximation). With L   the term
2

2

x

u




  can be neglected in comparison with 
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Velocity compared to the free stream velocity U  with these assumptions, we have the number of component 

equations reduce to those in the flow directions. The number of viscous terms in the direction of flow can be reduced to 

only dominant term. This amounts viscous terms are measured in terms of the boundary-layer thickness. And the 

inertial terms of the characteristic length L. Thus, along with these boundary- layer approximations. Equations (8), (9) 

and (10) for steady case may be written as 
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where K  is called the consistency coefficient and m is non-dimensional, and the dimension of K  depends on the 

value of m . The two-parameter rheological equation (15) is known as the Ostwald-de-Waele model or more 

commonly, the power-law model. The parameter m is an important index to subdivide fluids into pseudo-plastic fluids 

)1( m  and dilatant fluids )1( m . The extreme cases of the power-law model are )1( m for Newtonian behaviour 

and )0( m  for plastic or solid behaviour. To determine the pressure distribution, the velocity at the edge of the 

boundary layer is equal to the mainstream flow )(0 xU  and by Bernoullis theorem, the pressure would be constant in 

the inviscid flow influenced by the applied magnetic field. In order that equations (14) and (15) reduce to similarity 
form, we assume that the boundary conditions for these equations are of the following form 

 

                                               at )(,0:0 xVvuy w  
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                                                as  0: Uuy                                                                                 (17) 

 

where )(0 xwU is the stretching surface velocity which obeys the power-law relation 
mxUxwU  00 )( .. The 

conditions on the velocity at infinity mean that the velocity approaches the mainstream flow far-away from the wedge 

surface. Thus, the main boundary layer effects are restricted to the immediate neighbourhood of the surface. System 

(14) and (15) allows reducing both dependent and independent variables to one each by the following similarity 

transformations. This is further evidenced by the similar velocity profiles existing in the boundary layer for any x  in 

the stream wise direction. The pressure change across the boundary layer is negligible (i.e., constant) and pressure can 

be treated as function of only flow direction. Since the pressure is uniform throughout the flow field from the 

Burnoullis equation, with  0Uu outside the boundary layer, we have 
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It is clearly observed that the system (14) and (15) with two unknown functions u  and v  are easily reduced to an 

equation with one unknown function by defining the stream function ),( yx as 
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with boundary conditions 
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The similar solutions of equation (21) can be obtained by using similarity transformation 
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Substituting (23) in to (21) we get the following ordinary differential equation 
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and a new set of boundary conditions, 

 

                        ,)0( f               ,0)0(' f           and     1)(' f                                                  (25) 
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 is the permeability. For  0 , the above problem reduces to the 

Blasius flow that describes a two-dimensional flow over a flat plate with mass transfer and stretch of the plate, and is 

studied by several investigators with different cases. The system (24)-(25) describes the flow of Ostwald-de-Waele 

fluid in the two-dimension boundary-layer flow. Since any analytical solution is usually not possible because of high 

non-linearity, we solve the system (24) and (25) numerically using the Keller-box method which is employed in most 

of boundary-layer simulations. 

 

III. NUMERICAL SOLUTION 

 

We solve (24) with the boundary conditions (25) using Keller-box method for different values of m,   and  . We 

briefly give about two-point Keller-box method for the solution of (24). This scheme is very efficient and fast, and can 

be used to solve the boundary-layer problems. A detailed description about the method is given in Cebeci and 
Bradshaw (1977), Kudenatti et al (2013), and in the review paper given by Keller (1978).By using this method we are 

able to obtain approximations to the solutions of the original differential equation at each grid point. This method is 

unconditionally and has quadratic convergence even for non-uniform mesh points (Cebeci and Cousteix (1999)). To 

describe this method, the equation (24) with the boundary conditions (25) are rewritten in the form of system of first 

order ordinary differential equations and aregiven by 
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Using the backward finite difference operators for the system (26-28), we get 
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The above system necessarily produces a nonlinear algebraic system of equations for each grid. We linearize the above 

system by introducing, 
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like jj Vf  ,  etc and also neglected square terms in  jf , then, we get and the boundary conditions are 
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from equations (31 - 33)we get, 
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Using the above boundary conditions (30) in (31) - (33) we get a block tridiagonal matrix wherein each element is 

again 33  matrix, in the form 
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where  ....4,3,2j  The tridiagonal structure (35)  can be solved using LU decompositionmethod. The velocity 

equation for similar for each pressure gradient and permeable parameters the Keller-box code also given other required 

derived quantities such as the velocity profiles. The numerical solution of equation (24) fordifferent parameters, , , 

and m has been obtained. Results for the skin friction coefficient, velocity profiles and numerical solutions are 

reported. The drag force is reduced for dilatant fluids compared to pseudo-plastic fluids. 

 

IV. RESULTS AND DISSCUTION 

 

The similarity solutions of the permeable Falkner-Skan equation for non-Newtonian fluid are obtained for all physical 

parameters. This equation describes flow of a viscous fluid through porous media. The flow is governed by the 

nonlinear differential equation of order three and is solved by different approaches. The validity and efficiency of the 

solution method are tested for various parametric values of ,   and m   are compared with the numerical solution of 

the permeability Falkner-Skan equation. We also investigated the nature of the distribution of velocity in the boundary 

layer region at which the effects of permeability taken into account. Numerical values for these parameters are taken 

which have been extensively used in the previous theoretical studies. In particular, we have taken the range of values 

for which the solutions are predicted and boundary layer flows are realized. Further, the direct numerical solutions of 

the permeability Falkner-Skan equation are obtained via finite difference based Kellerbox method. This is a standard 

method for solving nonlinear boundary value problem on a closed interval, in which the Falkner-Skan is converted into 

an equivalent system of first order equations. The outer boundary condition is taken at very large value of   that is 

1max  The standard central difference schemes are used for the first order equations, and resulting nonlinear 

algebraic equations are linearized and solved. Our Keller-box code adapts a variable discretization step size to ensure 
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the desired accuracyin a double precision which was set to 
810 

 in all our computations. This is because a precise 

value of )0(''f  would be required to compare solution with the numerical ones.  

 

The values for  and m  are so chosen to be in the range of parameters that have been used in the previous studies  

(Bird et al (1987)). Also, full numerical Keller-box results using ∆η = 0.01 are compared with those obtained with 

still- smaller  ∆η = 0.001  values and the velocity shapes between two are graphically matchable; thus, most of the 

simulations are performed with ∆η = 0.01 . Further, the value of N ( the number of grid points) depends on the value  

∆η of  η and the large values of integration-domain lengths (see figures for details). We discuss most of our results 

pertaining to 1m  which is regarded as a generic problem as 1m  case has been fully discussed. The case 1m   

also serves as the bench-mark of present study. 

 

In order to get the physical insight, numerical computations are carried out for various sets of physical parameters on 

skin friction coefficient, pressure gradient variable parameter  , suction or injection parameter  and  permeability 

parameter  to obtain the effects of those parameters on dimensionless velocity. The obtained computational results 

(variations in velocity and viscosity profiles) are presented graphically in from figures 1(a) to 4(b)  

 

Figures 1(a) and 4(b) depicts that the variation of velocity profiles )(' f  as a function of   for different values of 

permeability parameter. There have been simulated using the Keller-box numerical method that is described. This code 

starts to predict permeability effects on the boundary-layer flow. It is noticed that thickness of the boundary-layer 

thickness increases for increasing permeability. It is very clear that form the boundar-layer shear-thickening when 

1m (i.e.in dilatant fluids) and when 1m the boundary-layer shear- thinning (i.e. in pseuo-plastic fluids) for fixed 

values of   ,  and m .. The two extreme cases of the power-law model are 1m  for Newtonian behaviour and 

0m  for plastic or solid behaviour.  

 

Figure 2 exhibits the nature of velocity profiles )(' f  as a function of   . It is very clear that for fixed ,  and   

the boundary-layer decreases as increase  m  . The effect of non-Newtonian parameter m  for fixed values of ,  

and on velocity fields are depicted.  When suction parameter 0.1  velocity increases exponentially as decrease 

in m  increases monotonically as decrease in m for 0.1 . 

 

 It is worthwhile to note from the figure 4 that, varation of viscosity profiles )(o with   the suction parameter 

0  and injection parameter 0  visocity decreases as increases m in both case when 46.0  and 0.1  

for fixed values of  and  . 

 

 
                                              Figure 1(a)                                                                Figure 1(b) 

 

Figure 1(a):  Variation of Velocity profiles )(' f with   for various various values of   , ,5.0  ,1  and 

6.0m .                                 
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  Figure 1(b):  Variation of Velocity profiles )(' f with   for various various values of   , ,5.0  ,1  and 

2.1m . 

 

 
                         

                                              Figure 2(a)                                                                   Figure 2(b)     

  

Figure 2(a):  Variation of Velocity profiles )(' f with   for various various values of m  , 1 , ,1  and 

5.1  

 

Figure 2(b):  Variation of Velocity profiles )(' f with   for various various values of m  , 1 , ,1  and 

5.1  
 

 
 

                                          Figure 3(a)                                                                     Figure 3(b) 

 

Figure 3(a):  Variation of Velocity profiles )(' f with   for various various values of   , 6.0m , ,6.1  and 

5.2  

 

Figure 3(b):  Variation of Velocity profiles )(' f with   for various various values of   , 2.1m , ,6.1  and 

5.2  
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Figure 4(a):  Variation of Velocity profiles 0 with   for various various values of m  , 2.0 , ,46.0  and 

5.0  

Figure 4(b):  Variation of Velocity profiles 0 with   for various various values of m  , 2.1 , 1  and 

5.1  
 

REFERENCES 

 
[1]M. J. Acrivo, Shah, and Petersen, E. F. On the Flow of a Non‐Newtonian Liquid on a Rotating DiskJournal of 

Applied Physics 31, 963 (1960). 

[2] W. R. Schowalter, The Application of Boundary-layer Theory to Power-Law Pseudoplastic Fluids: Similar    

Solutions, AIChE Journal volume6, Issue 1, march 1960 pages 24-28. 

[3]  H. I. Andersson, and F. Irgens, Gravity-Driven Laminar-Film FlowMech. 27, 153-172 (1998). 

[4] P. James  Denier, and P. Paul Dabrowski, On the Boundary-Layer Equations for Power-Law Fluids. Proceedings: 

Mathematical, Physical and Engineering Sciences Vol. 460, 2051 (Nov. 8, 2004), PP. 3143-3158. 

[5]  P. T. Griffiths, Stability of the Shear- Thinning Boundary-Layer Flow Over a Flat Inclined Plate, Proceedings of 

the Royal Society a Mathematical, Physical and Engneering Sciences  6th September 2017. 

[6]  T. Cebeci, and P. Bradshaw, Momentum Transfer in Boundary-Layers Corp: New York, Mc Graw- Hill Book CO, 

1977, 407p.   
[7] R. B. Kudenatt, S. R.Kirsur, L. N.Achala, and N. M. Bujurke, MHD Boundary-Layer Flow Over a Non-Linear 

Stretching Boundary with Suction and Injection, International Journal of  Non- Linear Mechanics 50 (2013) 58-67.  

[8]  T. Cebeci, and J. Cousteix, Modeling and Computation of Boundary-Layer Flows – Laminar, Turbulent and 

Transitional Boundary-Layers in Incompressible Flows, Long. Beach, Calif.: Horizons Pub. Berlin; New York: 

Springer, (1999). 

 

http://www.ijmrset.com/

