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ABSTRACT: Power systems are vital for modern society. Their reliable operation is crucial. Faults in these systems 
can cause significant disruptions. Traditional fault diagnosis methods have limitations. They often struggle with the 
complexity of modern grids. Machine learning (ML) offers intelligent solutions. ML algorithms can analyse vast 
amounts of data. They can detect intricate fault patterns. This leads to faster and more accurate diagnoses. However, 
there is a need for a comprehensive review. This paper should focus on the latest ML techniques. It should also address 
their practical implementation challenges. This paper presents various ML techniques applied for fault classification. It 
specifically focuses on intelligent fault diagnosis in power systems. Various ML methods are explored. These include 
deep learning and ensemble techniques. The paper analyses their effectiveness in different fault scenarios. The findings 
highlight the potential of advanced ML algorithms. They offer improved accuracy and faster response times. The study 
also identifies key challenges. These challenges include data scarcity and model interpretability. Future research 
directions are proposed. These directions aim to enhance the robustness and reliability of ML-based fault diagnosis. 
This paper contributes to the advancement of intelligent power system operation. 
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I. INTRODUCTION 

 

Power systems are critical infrastructures. They ensure reliable electricity delivery. Faults can occur in these complex 
networks. These faults can lead to significant disruptions. They can cause equipment damage. They can also result in 
power outages. Traditional fault diagnosis methods exist. These methods often rely on human expertise. They also use 
rule-based systems. These approaches can be time-consuming. They may also be inaccurate for complex faults. 
Identifying the exact location of a fault can be challenging. Determining the type of fault is also crucial. Traditional 
methods may struggle with the increasing complexity of power grids. They might not adapt well to evolving system 
conditions. There is a need for more intelligent diagnostic tools. These tools should be faster and more accurate. They 
should also be able to handle the intricacies of modern power systems. Machine learning offers a promising avenue for 
this. ML algorithms can analyse large datasets. They can learn complex fault patterns. This can lead to improved fault 
diagnosis capabilities. Traditional fault diagnosis has advanced. Yet, several limitations remain. These limitations are 
clearer in modern power systems. Rule-based systems need much expert knowledge. They may not easily adjust to new 
faults. They might also struggle with unexpected faults. Numerical relays offer fast protection. However, their diagnosis 
ability is limited. They mainly detect known fault types. Modern power systems generate vast amounts of data. 
Analysing this data is hard for traditional methods. Renewable energy sources are increasingly used. This adds new 
complexities. Solar and wind power are intermittent. This can cause grid instabilities. Fault patterns in systems with 
many renewables differ. They are unlike those in older systems. Traditional tools may not handle these new situations 
well. Faster and more accurate fault diagnosis is increasingly needed. This is because the demand for reliable power is 
higher. Any delay in finding and isolating a fault can be very serious. Therefore, more intelligent techniques are needed. 
These techniques should adapt to different situations. They must handle the complex nature of modern power systems. 
They should also learn from data. They need to provide quick and accurate diagnoses. 
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II. LITERATURE REVIEW 

 

Traditional fault diagnosis methods have long been the cornerstone of power system protection, with impedance-based 
techniques being among the most prevalent. These methods rely on analysing the changes in impedance values to 
detect and locate faults. Impedance-based techniques typically involve setting thresholds for impedance values, and 
when these thresholds are violated, a fault is indicated. While these methods are relatively simple to implement and 
have been widely used, they often struggle with the complexities of modern power systems. Factors such as load 
variations, network configurations, and the presence of distributed generation can significantly affect impedance 
measurements, leading to inaccurate fault detection and location. Furthermore, impedance-based methods may have 
difficulty distinguishing between faults and normal system disturbances, resulting in false alarms and unnecessary 
tripping of protective devices. The limitations of traditional methods in handling complex power system dynamics 
present a significant challenge. Modern power systems are characterized by increasing levels of complexity due to the 
integration of renewable energy sources, distributed generation, and advanced control systems. These factors introduce 
dynamic and unpredictable behaviours that traditional fault diagnosis methods struggle to accommodate. For example, 
the intermittent nature of solar and wind power can cause rapid fluctuations in voltage and current levels, making it 
difficult to differentiate between normal operating conditions and fault events. Similarly, the presence of power 
electronic devices, such as inverters and converters, can introduce harmonic distortions and transient phenomena that 
complicate fault diagnosis. Traditional methods often lack the adaptability and robustness required to handle these 
complex dynamics, leading to reduced accuracy and reliability. Adapting to new grid topologies and renewable energy 
integration poses further challenges for traditional fault diagnosis techniques. The increasing penetration of renewable 
energy sources is driving significant changes in grid topologies, with the emergence of microgrids, smart grids, and 
distributed energy resources. These new grid architectures present unique challenges for fault diagnosis, as they often 
involve bidirectional power flow, decentralized control, and increased network complexity. Traditional methods, which 
were designed for unidirectional power flow and centralized control, may not be directly applicable to these new grid 
environments. Furthermore, the integration of renewable energy sources can introduce new types of faults, such as 
those associated with power electronic converters and energy storage systems. Adapting fault diagnosis techniques to 
these evolving grid conditions requires innovative approaches that can handle the increased complexity and uncertainty. 
While significant research has been conducted on ML-based fault diagnosis in power systems, several research gaps 
still exist. Firstly, the availability of high-quality, labelled fault data remains a challenge. Training effective ML models 
requires large datasets with accurately labelled fault instances. Obtaining such data can be difficult due to the 
infrequency of certain fault types and data privacy concerns. Secondly, the interpretability of some ML models, 
particularly deep learning models, is limited. Understanding the reasoning behind a fault diagnosis is crucial for 
building trust in these systems and for taking appropriate corrective actions. Developing more interpretable ML models 
for fault diagnosis is an important area of research.  
 

Thirdly, the robustness and generalization ability of ML models need further investigation. Models trained on specific 
power system configurations or operating conditions may not perform well on unseen data or in different system 
scenarios. Developing models that can generalize well across various power system conditions is essential. Fourthly, 
the integration of ML-based fault diagnosis systems with existing protection and control infrastructure needs further 
exploration. Seamless integration is crucial for the practical deployment of these intelligent systems. Finally, there is a 
need for more comprehensive evaluations of ML techniques. These evaluations should consider factors such as 
computational complexity, real-time performance, and adaptability to evolving power system characteristics. 
 

III. SIGNIFICANCE OF STUDY 

 

This research paper aims to address the research gaps. It provides a comprehensive review of the latest advancements in 
machine learning applications for power system fault diagnosis. The study contributes to the body of knowledge by: 
 

• Providing an up-to-date overview of various ML techniques used for fault diagnosis. 
• Analysing the strengths and limitations of different ML approaches in the context of power systems. 
• Highlighting the challenges associated with data availability, model interpretability, and generalization. 
• Discussing the significance of integrating ML-based diagnosis with existing power system infrastructure. 
• Identifying promising future research directions to enhance the effectiveness and reliability of intelligent fault 

diagnosis systems. 
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The findings of this research will be valuable for researchers and practitioners in the field of power systems. It will 
provide insights into the potential of ML for improving fault diagnosis capabilities. It will also guide future research 
efforts towards addressing the existing challenges and developing more robust and practical solutions. Ultimately, this 
will contribute to the enhanced reliability and resilience of power systems. The remainder of this paper is organized as 
follows: Section 2 provides a detailed review of various machine learning algorithms applied to power system fault 
diagnosis. Section 3 discusses the challenges and limitations associated with the current ML-based approaches. Section 
4 explores potential future research directions in this field. Finally, Section 5 concludes the paper by summarizing the 
key findings and highlighting the overall significance of machine learning in advancing power system fault diagnosis. 
This research employs a comprehensive review methodology. It aims to analyze the existing literature. The focus is on 
machine learning applications. These applications are used for power system fault diagnosis. The study identifies key 
machine learning techniques. These techniques have been widely explored in this domain. Specifically, this review 
examines studies that utilize various algorithms. These algorithms include K-Nearest Neighbors (KNN). Decision Trees 
(DT). Random Forests (RF). Gradient Boosting. Support Vector Machines (SVM). Mixture Models (MM). The 
selection of these algorithms is based on their prevalence. They are commonly used in fault diagnosis tasks. Their 
diverse capabilities in pattern recognition are also a factor. The review process involves searching reputable academic 
databases. The search keywords include "power system fault diagnosis". "machine learning". "KNN for fault 
diagnosis". "DT for fault diagnosis". "RF for fault diagnosis". "Gradient Boosting for fault diagnosis". "SVM for fault 
diagnosis". "Mixture Models for fault diagnosis". The identified research papers are then carefully analyzed. The 
analysis focuses on several aspects. These aspects include the type of power system studied. The types of faults 
considered. The machine learning algorithms employed. The features extracted from the power system data. The 
performance metrics used for evaluation. The strengths and limitations of the applied techniques. A comparative 
analysis of the reviewed studies is conducted. This analysis aims to identify trends. It also aims to highlight the 
effectiveness of different ML algorithms. The analysis considers various fault scenarios. It also considers different 
power system components. The challenges and future directions identified in the literature are also synthesized. The 
remainder of this paper is structured as follows. Provides a detailed background on power system faults. It also 
introduces the fundamentals of the selected machine learning algorithms. This section lays the groundwork for 
understanding their application in fault diagnosis. Elaborates on the methodology adopted for this review. It outlines the 
literature search strategy. It also describes the criteria for paper selection and analysis. Presents a comprehensive review 
of the literature. It discusses the application of KNN in power system fault diagnosis. It then explores the use of DT and 
RF techniques. Subsequently, the application of Gradient Boosting and SVM is examined. Finally, studies utilizing 
Mixture Models are reviewed. For each algorithm, the section discusses its principles. It also highlights its applications 
and performance in fault diagnosis. Provides a comparative analysis of the reviewed machine learning techniques. It 
discusses their strengths and weaknesses. It also compares their performance across different fault scenarios. Identifies 
the key challenges and limitations. These are associated with the application of machine learning in this field. It also 
proposes potential future research directions. These directions aim to address the identified gaps. Concludes the paper. 
It summarizes the key findings of the review. It also emphasizes the significant role of machine learning in advancing 
power system fault diagnosis. 
 

IV. METHODOLOGY 

 

This research utilizes a structured review methodology. It aims to explore the existing body of knowledge. The focus is 
on machine learning-based approaches. These approaches are applied to enhance power system fault diagnostics. The 
study investigates various machine learning techniques. These techniques have been employed in this field. 
Specifically, this review examines studies that implement specific algorithms. These algorithms include K-Nearest 
Neighbours (KNN). Decision Trees (DT). Random Forests (RF). Gradient Boosting. Support Vector Machines (SVC). 
Mixture Models (MM). The selection of these algorithms is based on their widespread use. They are commonly applied 
in classification and pattern recognition tasks. These tasks are essential for effective fault diagnosis. The literature 
search involves employing relevant keywords. These keywords are used across prominent academic databases. The 
search terms include "power system fault diagnosis". "Machine learning applications". "KNN for fault detection". 
"Decision Tree in power systems". "Random Forest for fault classification". "Gradient Boosting in diagnostics". 
"Support Vector Machines for fault analysis". "Mixture Models for anomaly detection". The identified research papers 
are carefully analysed. The analysis focuses on several key aspects. These aspects include the specific power system 
under study. The types of faults being investigated. The machine learning algorithms utilized. The features extracted 
from the power system data. The performance metrics used to evaluate the diagnostic models. The reported benefits 
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and limitations of each approach. A comparative analysis is then conducted. This analysis aims to synthesize the 
findings from the reviewed literature. It seeks to identify common methodologies and effective algorithms. It also aims 
to highlight the strengths and weaknesses of different machine learning techniques. This comparison is performed 
across various power system configurations and fault scenarios. The remainder of this paper is structured as follows. 
Section II provides a foundational understanding. This includes an overview of typical power system faults. It also 
introduces the basic principles of the selected machine learning algorithms. This section establishes the necessary 
context for the subsequent discussion. Details the methodology employed in this research. It outlines the systematic 
approach used for the literature review. It describes the search strategy and the criteria for selecting relevant 
publications. Presents a comprehensive review of the literature. It examines the applications of KNN in power system 
fault diagnostics. It then discusses the use of DT and RF techniques. Subsequently, the application of Gradient Boosting 
and SVC is explored. Finally, studies utilizing Mixture Models for fault analysis are reviewed. For each algorithm, the 
section explains its fundamental concepts. It also highlights its specific applications and reported performance in the 
context of power system fault diagnosis. Offers a comparative analysis of the reviewed machine learning algorithms. It 
discusses their relative advantages and disadvantages. It also compares their suitability for addressing different types of 
power system faults. Identifies the key challenges and limitations. These are associated with the current applications of 
machine learning in this domain. It also proposes potential future research directions. These directions aim to overcome 
the identified limitations and further enhance the effectiveness of these techniques.  
 

V. MODEL DEVELOPMENT 

 

 

The power system under investigation, modeled in Simulink as shown in Figure 1, includes key components like a 
source, breakers, a distributed parameter line, and a load. Simulating faults within this model provides the necessary 
datasets containing voltage and current measurements for developing intelligent fault diagnosis algorithms. 
 

Table 1: Specifications of Power System Components for Simulation 

 

S. No.  Components  Specifications 

1. Three-Phase Source 25e3 Vrms, 0 degree, 50 Hz, 100e6 VA. 

 

Figure 1: Simulink model of the three-phase power transmission system used for simulating fault scenarios 
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2. Three-Phase V-I Measurement Phase-to-ground. 

3. Three-Phase Breaker 0.02s, 0.1s, 0.001 Ron(ohm), 1e1 Rs(ohm), inf Cs(F). 

4. Distributed Parameters Line 3N, 100km, 50Hz, [0.01273 0.3864]ohm/km, [0.9337e-3 
4.1264e-3]ohm/H, [12.74e-9 7.751e-9]ohm/F. 

5. Three-Phase Series RLC Load 25e3 Vrms, 50Hz, 100e6 W, 100(+VAR), 0(-VAR). 

 

This table 1 details the key components, and their electrical specifications used in the simulated power system model. It 
outlines parameters for the three-phase source, measurement points, breaker, transmission line, and RLC load, 
providing essential information for replicating the simulation environment. 

 

 

Figure 2: Simulink Model of Various Fault Types in a Three-Phase Power System 

 

This Figure 2 illustrates the different fault conditions, including various line-to-ground and line-to-line faults, simulated 
or considered for intelligent fault diagnosis in the power system model. These distinct fault scenarios are crucial for 
training and evaluating machine learning algorithms for accurate fault identification. 
 

Table 2: Specifications of Simulated Fault Types for Intelligent Diagnosis 

 

S. No. Faults Specification 

1. Single line-to-ground [ 0.025 0.075]sec, 0.001 ohm 

2. Double line-to-ground [ 0.125 0.175]sec, 0.001 ohm 

3. Line-to-line [ 0.225 0.275]sec, 0.001 ohm 

4. Triple line [ 0.325 0.375]sec, 0.001 ohm 

5. Triple line-to-ground [ 0.425 0.475]sec, 0.001 ohm 
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This table 2 presents the specific parameters, including duration and fault resistance, for the different types of faults 
simulated or analyzed. These specifications are crucial for generating realistic fault data used in the training and 
evaluation of machine learning models for fault diagnosis. 
 

VI. RESULTS AND DISCUSSION 

 

The Figure 3 visualizes the accuracy scores achieved by various machine learning models in diagnosing power system 
faults. It highlights the relative performance of different algorithms, demonstrating their effectiveness in correctly 
identifying fault types based on the input data. This comparison is crucial for selecting the most suitable model for 
intelligent fault diagnosis applications. 
 

 

 

Figure 3:  Performance Comparison of Machine Learning Models based on Fault Diagnosis Accuracy 

 

The Figure 3 visualizes the accuracy scores achieved by various machine learning models in diagnosing power system 
faults. It highlights the relative performance of different algorithms, demonstrating their effectiveness in correctly 
identifying fault types based on the input data. This comparison is crucial for selecting the most suitable model for 
intelligent fault diagnosis applications. 
 

Table 3: Performance Comparison of Fault Detection Models 

 

Model Accuracy (%) Precision (%) 
Support Vector Machines 79.74 80.12 

K-Nearest Neighbours 93.04 93.15 

Decision Trees 91.37 91.50 

Random Forest 92.78 92.90 

Gradient Boosting 91.37 91.45 

Neural Networks 82.56 83.01 

 

This table 3 summarizes the performance metrics, specifically Accuracy and Precision, for various machine learning 
models evaluated for fault detection in power systems. It provides a quantitative comparison, illustrating the 



  © 2025 IJMRSET | Volume 8, Issue 4, April 2025|                   DOI:10.15680/IJMRSET.2025.0804530 

 
 

IJMRSET © 2025                              |    An ISO 9001:2008 Certified Journal     |                            7433 

effectiveness of each model in correctly identifying faults and minimizing false positives, which is essential for 
selecting the optimal algorithm for the task. 
 

Support Vector Machines (SVM) achieved an accuracy of 79.74%. This indicates a reasonable initial capability for fault 
classification. However, SVM's performance could potentially be improved with optimized kernel selection and 
parameter tuning. K-Nearest Neighbors (KNN) demonstrated a significantly higher accuracy of 93.04%. This suggests 
that the fault characteristics in the feature space form well-defined clusters. The effectiveness of KNN is influenced by 
the chosen number of neighbors and the distance metric. Decision Trees (DT) achieved an accuracy of 91.37%. DTs 
offer the advantage of interpretability. The decision rules learned by the tree can provide insights into the fault 
classification process. However, DTs can be susceptible to overfitting on the training data. 
 

Random Forest (RF), an ensemble of decision trees, yielded an accuracy of 92.78%. The ensemble approach in RF 
generally leads to improved generalization and robustness compared to a single decision tree. It reduces the risk of 
overfitting. Gradient Boosting also achieved an accuracy of 91.37%. This ensemble method builds sequential models. 
Each new model attempts to correct the errors made by the previous models. Careful tuning of hyperparameters is 
essential for optimal performance. Neural Networks (NN) attained an accuracy of 82.56%. The performance of the 
neural network is dependent on its architecture, training algorithm, and hyperparameter settings. Further 
experimentation with different network structures and training regimes might lead to enhanced accuracy. 
 

VII. CONCLUSION AND FUTURE SCOPE 

 

This research successfully applied and evaluated several machine learning algorithms for the task of power system fault 
diagnosis using a simulated transmission line model. The results, as presented in Figure 1, demonstrate the significant 
potential of machine learning techniques in accurately identifying and classifying various types of faults. The K-

Nearest Neighbors and Random Forest models achieved the highest diagnostic accuracies. This underscores their 
effectiveness for this application. Other algorithms, including Decision Trees and Gradient Boosting, also showed 
promising results. Support Vector Machines and Neural Networks, while showing reasonable performance, may benefit 
from further optimization. The findings of this study contribute valuable insights into the application of data-driven 
methods for enhancing the reliability and security of power systems through intelligent fault diagnosis. 
 

To further increase diagnostic accuracy, future studies could investigate more sophisticated feature selection and 
engineering strategies. One possible avenue is to investigate the use of deep learning architectures, specifically 
Convolutional Neural Networks (CNNs), for the study of fault transients in time-series data. Future research should 
also focus on improving the interpretability of complex machine learning models and addressing the issues related to 
imbalanced fault datasets. Additionally, more study is needed to assess these models' applicability and robustness in 
noisy real-world operating environments and investigate their potential for real-time implementation in power system 
protection methods. Building confidence and comprehension in these intelligent systems would also benefit from the 
development of explainable AI (XAI) defect diagnosis procedures. 
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