
 

e-ISSN:2582-7219 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       INTERNATIONAL JOURNAL OF  

          MULTIDISCIPLINARY RESEARCH 
 

       IN SCIENCE, ENGINEERING AND TECHNOLOGY 

 

 

 

Volume 7, Issue 11, November 2024  
 
 

 

 

 

 

 

 

 

Impact Factor: 7.521 
 
 

 

 

 

 

 

 

 

6381 907 438    6381 907 438  ijmrset@gmail.com @ www.ijmrset.com 



© 2024 IJMRSET | Volume 7, Issue 11, November 2024|                                 DOI: 10.15680/IJMRSET.2024.0711108 

 

IJMRSET © 2024                                                     |     An ISO 9001:2008 Certified Journal   |                                               17073 

AI Game Agent with Deep Q-Learning using 

Reinforcement Learning  
 

T. Rohith, P. Sai Charan, C. Sai Kiran Kumar Reddy, R. Sri Harsha Rao, S. Sai Kiran Reddy, 

Prof. Sweety Julia 

U.G. Student, Department of Computer Engineering (AI&ML), Malla Reddy University, Hyderabad, India 

U.G. Student, Department of Computer Engineering (AI&ML), Malla Reddy University, Hyderabad, India 

U.G. Student, Department of Computer Engineering (AI&ML), Malla Reddy University, Hyderabad, India 

U.G. Student, Department of Computer Engineering (AI&ML), Malla Reddy University, Hyderabad, India 

U.G. Student, Department of Computer Engineering (AI&ML), Malla Reddy University, Hyderabad, India 

Professor, Department of Computer Engineering (AI&ML), Malla Reddy University, Hyderabad, India 

 

ABSTRACT: Reinforcement Learning (RL) has emerged as a pivotal methodology in developing AI game agents 

capable of autonomously learning and mastering complex tasks. By leveraging trial- and-error interactions with their 

environment, these agents optimize their decision-making policies to maximize cumulative rewards. This abstract 

explores the application of RL in game agents, highlighting key techniques and achievements. One prominent RL 

algorithm is Q-learning, where agents learn a Q function that estimates the expected utility of taking a given action in a 

given state. More advanced methods, such as Deep Q-Networks (DQNs), incorporate neural networks to handle high-

dimensional state spaces typical in modern video games. Policy gradient methods, like Proximal Policy Optimization 

(PPO) and Actor-Critic models, further enhance the agent's ability to learn continuous action spaces and adapt to 

dynamic game environments. The integration of RL in game agents offers several advantages, including improved 

performance, the ability to learn complex strategies, and adaptability to unforeseen scenarios. However, challenges 

remain, such as sample inefficiency, the need for extensive computational resources, and difficulties in transferring 

learned behaviors to new tasks. Future research directions involve enhancing sample efficiency through model- based 

RL, improving generalization capabilities, and reducing the computational burden of training sophisticated game 

agents. RL has revolutionized the development of AI game agents, enabling them to achieve superhuman performance 

in various games. Continued advancements in RL algorithms and computational power promise to further elevate the 

capabilities and applications of AI in gaming and beyond. 

 

KEYWORDS: Reinforcement Learning, AI game agents, Q-learning, Deep Q-Networks, Policy gradient methods, 

Proximal Policy Optimization, Actor-Critic models, sample efficiency, model-based RL, generalization, 

computational resources. 

I. INTRODUCTION 

 

Reinforcement Learning (RL) has emerged as a pivotal methodology in developing AI game agents capable of 

autonomously learning and mastering complex tasks. By leveraging trial- and-error interactions with their 

environment, these agents optimize their decision-making policies to maximize cumulative rewards. This abstract 

explores the application of RL in game agents, highlighting key techniques and achievements. One prominent RL 

algorithm is Q-learning, where agents learn a Q function that estimates the expected utility of taking a given action in a 

given state. More advanced methods, such as Deep Q-Networks (DQNs), incorporate neural networks to handle high-

dimensional state spaces typical in modern video games. Policy gradient methods, like Proximal Policy Optimization 

(PPO) and Actor-Critic models, further enhance the agent's ability to learn continuous action spaces and adapt to 

dynamic game environments. The integration of RL in game agents offers several advantages, including improved 

performance, the ability to learn complex strategies, and adaptability to unforeseen scenarios. However, challenges 

remain, such as sample inefficiency, the need for extensive computational resources, and difficulties in transferring 

learned behaviors to new tasks. Future research directions involve enhancing sample efficiency through model- based 
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RL, improving generalization capabilities, and reducing the computational burden of training sophisticated game 

agents. RL has revolutionized the development of AI game agents, enabling them to achieve superhuman performance 

in various games. Continued advancements in RL algorithms and computational power promise to further elevate the 

capabilities and applications of AI in gaming and beyond. 

 

II. RELATED WORK 

 

1. Reinforcement Learning BasicsSutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. This 

book is a fundamental resource that covers the principles of reinforcement learning, including the theory and 

algorithms. 

2. Deep Q-Learning Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level control through deep 

reinforcement learning. This paper introduces deep Q-learning, which combines Q-learning with deep neural 

networks, the technique used in the Snake AI project. 

3. PyTorch FrameworkPaszke, A., Gross, S., Massa, F., et al. (2019). PyTorch: An Imperative Style, High-

Performance Deep Learning Library. This paper discusses the PyTorch library, which is used for building and 

training neural networks in the Snake AI project. 

4. Game AI DevelopmentMillington, I., & Funge, J. (2009). Artificial Intelligence for Games. This book provides 

insights into the application of AI techniques in game development, relevant to creating the Snake game 

environment and agent. 

5. Previous Implementations and TutorialsPatrick Loeber's Tutorials: The project itself is based on tutorials byPatrick 

Loeber, which provide practical guidance on implementing reinforcement learning for the Snake game. This 

includes setting up the environment, agent, and training process. 

 

III. METHODOLOGY 

 

1. State Representation: 

Define the game state (e.g., a grid where cells represent the snake, food, and walls). 

 

2. Action Space: 

Define possible actions (e.g., moving up, down, left, right). 

 

3. Reward Function: 

Design rewards for: 

1. Eating food (positive reward). 

2. Colliding with walls or itself (negative reward). 

3. Staying alive for a longer duration (small positive reward). 

 

4. Experience Replay: 
Store past experiences (state, action, reward, next state) to sample mini-batches during training. 

 

5. Neural Network Architecture: 
Design a neural network to predict Q-values, with layers for input, hidden layers, and an output layer representing 

Q-values for actions. 

 

6. Training Loop: 
Play multiple episodes of the game: 

 

1. For each episode, choose actions based on the current policy. 

2. Update the Q-values using the Bellman equation. 

3. Store experiences and train the neural network using samples from the replay buffer. 

 

7. Epsilon-Greedy Strategy: 
Balance exploration and exploitation during action selection. 
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8. Target Network: 
If using DQN, maintain a separate target network that is updated periodically to stabilize training. 

 

9. Performance Evaluation: 
Implement methods to evaluate and visualize the AI's performance (e.g., tracking scores, survival time, and win 

rates). 

 

10. Hyperparameter Tuning: 
Experiment with learning rates, discount factors, and network architectures to optimize the learning process. 

 

ARCHITECTURE 
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IV. EXPERIMENTAL RESULTS 

 

  

From the test results we can observe that the snake in the game, learns about its boundaries and get to what step 

leads to achieve reward and what leads to penalty . It helps balancing exploration and exploitation, and the main 

objective is to maximize the total reward. 

  

V. CONCLUSION 

 

This project demonstrates a practical application of Reinforcement Learning and Deep Q-Learning for AI agent 

development. By using PyTorch and Pygame, the AI agent successfullylearns to play the Snake game through trial and 

error. Key takeaways include: 

• Reinforcement Learning:* The agent learns from rewards and penalties, improving its performance over 

time. 

• Deep Q-Learning:* A neural network approximates Q-values, guiding the agent's decision-making. 

Training Process:* The agent is efficiently trained using the Bellman equation, Adam optimizer, and 

MSE loss. 

• Neural Network Architecture:* A simple feed-forward network processes game states to 

predict actions. 
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