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ABSTRACT: Quantum dots (QDs) are solid-state nanostructures that can confine electrons or holes in all three spatial 

dimensions, which leads to discretization of energy levels. It can also be defined as a semiconductor whose excitons are 

confined in all three spatial dimensions. As a result, they have properties that are between those of bulk semiconductors 

and discrete molecules. The QD with the confined electrons can be treated as an artificial atom. Semiconductor 

quantum dots have emerged as strong candidates for quantum computation due to significant progress in ultrafast 

optoelectronics, nanostructure fabrication and characterization techniques, and possibility of large scale integration. 

The spin of the electron or hole can be used for the quantum bits due the low de-coherence of the spin degree of 

freedom which allows sufficient time for carrying out any gating operation on these qubits. So, effect of shape of 

Quantum Dots have been investigated in this paper. 

 

I. INTRODUCTION 

 

Semiconductor quantum dots have emerged as strong candidates for quantum computation due to significant progress 

in ultrafast optoelectronics, nanostructure fabrication and characterization techniques, and possibility of large scale 

integration. The spin of the electron or hole can be used for the quantum bits due the low de-coherence of the spin 

degree of freedom which allows sufficient time for carrying out any gating operation on these qubits. 

Interest in quantum computation was sparked when the algorithms of Shor and Grover demonstrated that the 

computation problems which require extensive resources and time on a classical computer become feasible on a 

quantum computer. Investigations into a physically realizable quantum computer have been carried out on ion-trap 

systems, as well as cavity quantum electrodynamic systems, and in nuclear magnetic resonance systems.  

The two qubit operations are required for making a universal gate which would need the preparation of entangled 

states. Coupled quantum dots or the quantum dot molecules provide a powerful system for producing controllable 

entanglement between spin qubits. The exchange coupling between the electrons/holes establishes the necessary 

entanglement between the spin. 

In recent papers, one can find many theoretical proposals for the implementation of quantum dots (QDs) in quantum 

computation. These proposals consist in application of either the orbital or spin states of electrons confined in the QDs. 

The orbital states of electrons in the coupled QDs were proposed for a possible realization of a quantum controlled-

NOT (CNOT) gate. Spin states of coupled QDs are intensively studied as possible candidates for qubits and quantum 

logic gates due to the long relaxation time. In order to use the qubits as efficient information carriers and to perform a 

unitary time evolution of them we have to maintain the coherent quantum states for a time that exceeds the quantum 

gate operation time by many orders of magnitude. This requirement is very difficult to satisfy in solid-state devices and 

a lot of research is being carried out to overcome this difficulty. The present paper is organized in following sections:  

 

1. Introduction to Quantum Dots 

2. Applications of Quantum Dots 

3. Introduction to Quantum Computation 

4. Fabrication of Quantum Dots 

5. Effect of Size of Quantum Dots 

6. Method of solving the schrodinger equation. 

7. Effect of shape of Quantum Dots. 

8. Bibliography and references.  

 

II. INTRODUCTION TO QD’S 

 

Quantum dots (QDs) are solid-state nanostructures that can confine electrons or holes in all three spatial dimensions, 

which leads to discretization of energy levels. It can also be defined as a semiconductor whose excitons  are confined in 

all three spatial dimensions. As a result, they have properties that are between those of bulk semiconductors and 

discrete molecules. The QD with the confined electrons can be treated as an artificial atom.  

http://www.ijmrset.com/
http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Exciton
http://en.wikipedia.org/wiki/Potential_well
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Quantum dots are semiconductor nanocrystals with a length of approximately 2-10 nanometers. These nanocrystals 

have wavelength smaller than that of an optically-excited electron-hold pair (coherent length). 

 

III. APPLICATIONS OF QUANTUM DOTS 

 

Researches are going on for the implementation of quantum dots in the fields such as: 

•  single-electron transistor 

•  Implementations of Qbits for quantum       

   Information processing 

•  Diode Lasers 

•  Optical Amplifier 

•  Biological Sensors 

•  Optical encoding and multiplexing applications 

• Single Electron Memory 

• Nano-electronic Integrated Circuit (NIC) 

• Quantum Cellular Automata 

The new generations of quantum dots have far-reaching potential for the study of intracellular processes at the single-

molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, 

and diagnostics. 

 

IV. INTRODUCTION TO QUANTUM COMPUTATION 

 

Most of the driving force behind developing the first computers stemmed from an application 

 Babbage - accurate logarithmic calculations 

 Turing – assist in code breaking 

 Zuse – computational devices for engineers 

After Deutsch’s publication, it would take 9 years before a strong application for a quantum computer would arise  

a. Until 1994, only a few contrived mathematical problems would be investigated 

b. In 1994, Peter Shor circulated a preprint of a paper in which he set out a method for using quantum computers to 

crack an important problem in Number Theory 

We can list the important developments in this field as follows: 

 1982 - Feynman proposed the idea of creating machines based on the laws of quantum mechanics instead of 

the laws of classical physics. 

  1985 - David Deutsch developed the quantum turing machine, showing that quantum circuits are universal. 

  1994 - Peter Shor came up with a quantum algorithm to factor very large numbers in polynomial time. 

 1997 - Lov Grover develops a quantum search algorithm with O(√N) complexity 

 

Shor’s algorithm which is based on Quantum Computing can be compared by following figure: 
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Factorization is required for the famous RSA algorithm for data security. 

In recent papers, one can find many theoretical proposals for the implementation of quantum dots (QD) in quantum 

computation  These proposals consist in application of either the orbital or spin states of electrons confined in the QDs. 

The orbital states of electrons in the coupled QDs were proposed for a possible realization of a quantum controlled-

NOT (CNOT) gate. Spin states of coupled QDs are intensively studied as possible candidates for qubits and quantum 

logic gates due to the long relaxation time of Zeeman-split states in an external magnetic field. Performing a direct 

measurement, Hanson et al. demonstrated that the relaxation time of the spin states of the QD-confined electrons is 

sufficiently long to use these states as qubits in quantum computation. Hayashi et al. reported the coherent 

manipulation of spin qubits in laterally coupled QDs. The large number of theoretical papers on quantum computation 

with QDs, is in contrast with the small number of experimental studies. The discrepancy between the numbers of 

theoretical and experimental papers mainly results from the decoherence problem. In order to use the qubits as efficient 

information carriers and to perform a unitary time evolution of them we have to maintain the coherent quantum states 

for a time that exceeds by many orders of magnitude the quantum gate operation time. This  requirement is very 

difficult to satisfy in solid-state devices.  

 

Quantum logic operations: 

We consider two electrons confined in two coupled asymmetric QDs. The barrier separating the QDs is taken to be 

sufficiently wide so that the tunneling of electrons between the individual QDs is neglected. Such a nanostructure can 

be formed, e.g., in a quantum wire, which is fabricated from different materials. We assume that the nanostructure 

possesses cylindrical symmetry and lateral  confinement of the electrons, i.e., the confinement in the x-y plane, perpen 

dicular to the growth szd axis, is much stronger than the  vertical szd confinement. The lateral confinement is 

approximated by a harmonic-oscillator potential and the vertical confinement has the form of asymmetric potential 

wells separated by the barrier 

 

 
As a result we find CNOT Gate which act on computational basis states as follows:  

 
 

Simillerly to get all gate functions a gate which operates on three qubits is called a Controlled Controlled NOT (CCN) 

Gate.  Iff the bits on both of the control lines is 1,then the target bit is inverted.   
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1 0 1 1 0 1 

1 1 0 1 1 0 

1 1 1 0 1 1 

 

V. FABRICATION METHOD OF QUANTUM DOTS 

 

There are three primary methods of making a Quantum Dots with the goal to engineer potential energy barriers to 

confine electrons in 3 dimensions 

• Lithography, 

• Colloidal Synthesis, & 

• Epitaxy. 
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VI. EFFECT OF SIZE OF QUANTUM DOTS 

 

 
5 nm dots: red - 1.5 nm dots: violet(QDs prepared by colloidal synthesis) 

By changing size, shape, and composition, quantum dots can change their absorptive and emissive properties 

dramatically.  

 

VII. METHOD OF SOLVING THE SCHRODINGER EQUATION 

 

Quantum confinement produces discrete states Energy levels from solutions to Schrodinger Equation:  

 
For 1D infinite potential well  

 

 
I am using direct relaxation method for calculating Eigen values and Eigen function using fourier method proposed by 

R. Kosloff: 

Description of the method: 

In quantum mechanics the state of the system is represented by wave function ψ, while the time evolution is governed 

by the schrodinger equation   

 
It consists of three steps, of which step one is setting up a grid and constructing on it an initial wavefunction. Grids in 

Cartesian as well as skewed, cylindrical or spherical coordinates can be used. Step two is the calculation of the 

Hamiltonian operation: φ equals to   

 

where H = P
2
/2m + V 

Because the potential energy operator V is local in coordinate space, its operation is a simple multiplication of the 

wavefunction at grid point i by V in grid  point i.  

 ErV
m
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A similar procedure is possible for the kinetic energy operator if the wavefunction is represented in momentum space. 

The transformation to momentum space is done by a fast Fourier transform or by a fast Hankel transform for radial 

problems. The third step is to propagate the wavefunction in imaginary time. The solution of the time-dependent 
Schrodinger then becomes: 

 
Where τ = it. Expanding the initial wavefunction in eigenfunctions ψn, of the Hamiltonian: 

 
Examining this equation we find that each eigenfunction relaxes to zero at a rate which is proportional to its eigenvalue. 

This means that the ground state which relaxes most slowly, persists. As a consequence, after a time τ the component of 

the eigenfunction n is reduced relative to the ground state by the ratio:  

 

Obtaining excited states:  

The first excited state is obtained by removing the ground state from the Hilbert  space. This makes the first excited 

state the ground state of the new space.  

If P0 = lψ0><ψ01   is the projector operator of the ground state, then the ground state of the operator: 

 
is the first excited state. This procedure is repeated, to obtain the next excited state by removing the first excited state. 

Continuing this procedure the ground  state of the operator is the nth excited state can be calculated.  

  

  
These figures I have taken from the matlab program I have developed. Figure 1 is showing the potential well, 2 is 

showing ground state wavefunction, and 3 is showing the first excited state. 

I have taken many shape of the confinement potential, which is basically representing the shape of Quantum Dots.   

Quantum Dots fabricated by modern semiconductor nanotechnology possess various shapes. Semiconductor 

nanocrystals with nearly spherical boundries emedded in insulating materials are examples of spherical QD’s. Excess 

electrons confined in nanometer-sized QD’s can form bound atomiclike states. The confinement potential, which 

-4

-2

0

2

4

-4

-2

0

2

4
0

5

10

15

20

v

-4

-2

0

2

4

-4

-2

0

2

4
-0.05

0

0.05

0.1

0.15

cal

-4

-2

0

2

4

-4

-2

0

2

4
-0.15

-0.1

-0.05

0

0.05

0.1

cal

http://www.ijmrset.com/


International Journal Of Multidisciplinary Research In Science, Engineering and Technology (IJMRSET) 

  | ISSN: 2582-7219 | www.ijmrset.com |  

  | Volume 3, Issue 10, October 2020 | 

IJMRSET © 2020                                                       | An ISO 3297: 2007 Certified Organization |                                            674 

 

 

 

results from a conduction- band discontinuity at the QD boundary and external voltages applied to the nanostructure, is 

usually approximated by a three dimensional potential well. 

 

 
One-electron energy levels for the Gaussian (solid lines) and harmonic-oscillator (dashed lines) 3D potential. 

The energy levels are labelled by quantum numbers (n,l).  

The shapes of both the potential energies are also shown as functions of distance r from the QD center.  
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