

International Journal of Multidisciplinary

Research in Science, Engineering and Technology

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Impact Factor: 8.206 Volume 8, Issue 4, April 2025

© 2025 IJMRSET | Volume 8, Issue 4, April 2025 | DOI:10.15680/IJMRSET.2025.0804243

IJMRSET © 2025 | An ISO 9001:2008 Certified Journal | 4928

Malware Detection Using Machine Learning

Mr. Sowbaran S

III-B.Sc., Department of Computer Science with Data Analytics, Dr. N.G.P. Arts and Science College,

Coimbatore, India

Ms. A. Roselin

Assistant Professor, Department of Computer Science with Data Analytics, Dr. N.G.P. Arts and Science College

Coimbatore, India

ABSTRACT: The project titled "Malware Detection Using Machine Learning and Binary Visualization" aims to

enhance malware detection by transforming binary files into grayscale images and using convolutional neural networks

(CNNs) for classification. Traditional antivirus methods often fail to detect new or obfuscated threats, but this approach

allows deep learning models to identify hidden patterns in binary data. The system includes modules for generating

malware and benign binary data, training the CNN model, visualizing important features using Grad-CAM, and

converting binaries into image datasets. It also features a Streamlit-based interactive dashboard for real-time file

analysis and a performance viewer for metrics like accuracy, precision, and recall. This innovative solution improves

detection accuracy and provides visual explanations, making it a powerful tool for cybersecurity professionals.

KEYWORDS: Malware detection, Machine learning, Binary visualization, Convolutional neural networks (CNN),

Deep learning, Binary file analysis, Image-based classification, Computer-aided cybersecurity, Grad-CAM, Real-time

threat detection.

I. INTRODUCTION

Malware poses a significant threat to cybersecurity, with traditional antivirus methods often struggling to detect new or

obfuscated threats. early and accurate detection is essential to prevent data breaches and system compromise. this

project leverages machine learning, specifically convolutional neural networks (cnns), to automate and enhance

malware classification. by converting binary files into grayscale images, cnns learn hidden patterns that distinguish

malware from benign software. image-based analysis improves detection accuracy and overcomes the limitations of

manual or signature-based approaches. techniques like data augmentation further strengthen model performance. this

ai-driven system offers real-time, consistent threat detection, reducing reliance on manual analysis and boosting overall

cybersecurity efficiency. Integrating deep learning with binary visualization transforms malware detection into a

smarter, faster, and more reliable process.

II. RELATED WORK

Research on enhanced Convolutional Neural Networks (CNNs) for malware detection has led to significant

advancements in automated binary analysis and cybersecurity. Deep learning techniques, particularly CNNs, have been

effectively applied to classify malware by converting executable binary files into grayscale image representations. This

image-based approach allows the model to learn structural and behavioral patterns within malicious code that

traditional signature-based methods may overlook. Transfer learning using pre-trained models such as VGG16, ResNet,

and InceptionV3 has improved classification accuracy by leveraging knowledge from large-scale image datasets.

Attention mechanisms, including Vision Transformers and Grad-CAM, have been integrated to enhance interpretability

by highlighting the most influential regions in binary images that guided the model’s decisions. To improve model

generalization and robustness, preprocessing and augmentation techniques such as normalization, resizing, and

grayscale intensity adjustment have been applied. Researchers have also explored hybrid architectures, combining

CNNs with models like Recurrent Neural Networks (RNNs) and Capsule Networks, to boost feature extraction and

detection accuracy. Additionally, Generative Adversarial Networks (GANs) have been employed to synthesize diverse

malware samples, addressing challenges posed by limited or imbalanced datasets.

© 2025 IJMRSET | Volume 8, Issue 4, April 2025 | DOI:10.15680/IJMRSET.2025.0804243

IJMRSET © 2025 | An ISO 9001:2008 Certified Journal | 4929

III. CONVOLUTIONAL NEURAL NETWORK ALGORITHM

The proposed work employs CNN as a deep learning technique to classify OCT images to four categories. The first

three categories include the mentioned diseases: DME, CNM, and Drusen. The fourth category represents the normal

eye images. The adopted layers are listed below.

 1. Convolutional Layer.

 2. ReLU Layer.

 3. Pooling Layer.

 4. Flatten Layer.

 5. Softmax Layer.

Convolutional Layer: A Convolutional Layer is the core component of a CNN that extracts important features from

an image by applying small filters (kernels). These filters slide over the input, performing a convolution operation

where they multiply pixel values and sum them up, producing a feature map that highlights patterns like edges,

textures, and shapes. The ReLU activation function is commonly applied to introduce non-linearity, helping the

network learn complex patterns. The layer's output size depends on parameters like filter size, stride, and padding.

ReLU Layer: A ReLU (Rectified Linear Unit) Layer is an activation function commonly used in CNNs to introduce

non-linearity. It applies the function f(x) = max (0, x) to each input value, replacing all negative values with zero while

keeping positive values unchanged. This helps the network learn complex patterns by preventing vanishing gradients,

which can slow down training in deep networks. Unlike sigmoid or tanh activations, ReLU is computationally efficient

and allows faster convergence. Variants like Leaky ReLU and Parametric ReLU address the issue of "dying ReLUs,"

where neurons output only zeros

Pooling Layer: A Pooling Layer is used in CNNs to reduce the spatial dimensions of feature maps while retaining

important information. It helps decrease computation, prevent overfitting, and make the model more robust to small

variations in the input. The most common type is Max Pooling, which selects the maximum value in a given window,

preserving the strongest features. Average Pooling, on the other hand, computes the average of values within the

window. Pooling layers typically use a 2×2 filter with a stride of 2, reducing the feature map size by half.

Flatten Layer: A Flatten Layer is used in CNNs to convert the multidimensional feature maps into a 1D vector,

making the data compatible with fully connected (dense) layers for classification. After convolution and pooling layers

extract spatial features, the flatten layer removes the spatial structure and arranges all values into a single continuous

vector. This allows the model to process the extracted features using fully connected layers, which then map them to

the final output classes. It acts as a bridge between the convolutional layers and the classification layers in a CNN.

Softmax Layer: A Softmax Layer is used in the output layer of a CNN for multi-class classification. It converts raw

scores (logits) from the previous layer into probabilities by applying the Softmax function, which ensures that all output

values sum to 1, making them interpretable as class probabilities.

IV. METHODOLOGY

The methodology follows a deep learning pipeline that includes data preprocessing, augmentation, model development,

training, and evaluation. The images are resized, normalized, and augmented before being fed into a CNN model. The

CNN architecture consists of multiple convolutional layers for feature extraction, followed by fully connected layers

for classification. Categorical cross-entropy loss is used for training, while the Adam optimizer is used for optimization.

Optimal accuracy is attained through hyperparameter adjustment.

© 2025 IJMRSET | Volume 8, Issue 4, April 2025 | DOI:10.15680/IJMRSET.2025.0804243

IJMRSET © 2025 | An ISO 9001:2008 Certified Journal | 4930

V. FLOW DIAGRAM

DATASET DESCRIPTION

 •File Name: Name of the malware or benign executable file

•Byte Sequence: Hexadecimal or binary content of each file

•Image Representation: Grayscale image created by mapping byte values (0–255) to pixels

•Label: Class label — Malware or Benign

•File Size: Size of the file, which may correlate with malware family

• Source: Public malware datasets such as Malimg Dataset, VirusShare, and Kaggle MalwareImage dataset

Start

Data Collection

Feature Extraction

Data Preprocessing

Feature Selection

Train-Test split

Model Training

Model Evaluation

Malware Detection

© 2025 IJMRSET | Volume 8, Issue 4, April 2025 | DOI:10.15680/IJMRSET.2025.0804243

IJMRSET © 2025 | An ISO 9001:2008 Certified Journal | 4931

VI. RESULT AND DISCUSSION

Pseudo code :

Start the program

Import required libraries and custom modules

Function: load_model

 Load the saved CNN model weights

 Initialize the CNN model

 Load weights into the model

 Return the model

Function: preprocess_file(file, type)

 If file is image:

 Convert to grayscale and resize

 Convert to tensor

 Else if file is binary:

 Convert binary data to grayscale image

 Resize and convert to tensor

 Else if file is CSV:

 Read CSV as matrix

 Handle invalid or missing values

 Convert to grayscale image and resize

 Return preprocessed tensor and original image

Function: save_predictions_to_csv(file_path, predictions)

 Save prediction results in CSV format

Function: main (Streamlit app)

 Show app title

 Show sidebar with options: "Malware Detection" or "Show Statistics"

 If "Malware Detection" selected:

 Load the model

 Upload file

 Preprocess the file

 Make prediction using model

 Show prediction result and confidence

 Display bar chart for confidence

 Generate and show Grad-CAM heatmap

 Save prediction to CSV

 If "Show Statistics" selected:

 Input CSV file path

 Load and show statistics from the file

Call main function

© 2025 IJMRSET | Volume 8, Issue 4, April 2025 | DOI:10.15680/IJMRSET.2025.0804243

IJMRSET © 2025 | An ISO 9001:2008 Certified Journal | 4932

VII. RESULTS

© 2025 IJMRSET | Volume 8, Issue 4, April 2025 | DOI:10.15680/IJMRSET.2025.0804243

IJMRSET © 2025 | An ISO 9001:2008 Certified Journal | 4933

 VIII. CONCLUSION & FUTURE-ENHANCEMENT

This project demonstrates the effectiveness of using CNNs for automated eye disease classification. By leveraging deep

learning with TensorFlow and Keras, the system accurately identifies cataracts, diabetic retinopathy, glaucoma, and

normal cases. The use of a React.js frontend, Flask backend, and cloud deployment via AWS and Docker ensures a

smooth, scalable, and accessible user experience.

Future enhancements include:

• Expanding the dataset for better accuracy and generalization.

• Adding more eye disease categories.

• Exploring advanced models like Vision Transformers and hybrid CNN-RNNs.

• Improving scalability with cloud auto-scaling.

• Speeding up predictions using TensorRT or ONNX Runtime.

REFERENCES

[1] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

[2] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image

recognition." arXiv preprint arXiv:1409.1556 (2014).

[3] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016.

[4] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image

segmentation." Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international

conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer international publishing, 2015.

[5] Gulshan, Varun, et al. "Development and validation of a deep learning algorithm for detection of diabetic

retinopathy in retinal fundus photographs." jama 316.22 (2016): 2402-2410.

[6]Ting, D. S., Cheung, C. Y., Lim, G., et al. (2017). Development and validation of a deep learning system for diabetic

retinopathy and related eye diseases using retinal images from multiethnic populations. JAMA, 318(22), 2211-2223.

[7] Esteva, A., Kuprel, B., Novoa, R. A., et al. (2017). Dermatologist-level classification of skin cancer with deep

neural networks. Nature, 542(7639), 115-118.

 [8] Rajalakshmi, R., Subashini, R., Anjana, R. M., & Mohan, V. (2018). Automated diabetic retinopathy detection in

smartphone-based fundus photography using artificial intelligence. Eye, 32(6), 1138-1144.

 [9] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural

networks. Advances in neural information processing systems, 1097- 1105. Howard, J., & Gugger, S. (2020). Fastai: A

layered API for deep learning. Information, 11(2), 108.

INTERNATIONAL JOURNAL OF

MULTIDISCIPLINARY RESEARCH
IN SCIENCE, ENGINEERING AND TECHNOLOGY

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com |

www.ijmrset.com

mailto:ijmrset@gmail.com
http://www.ijmrset.com/

	III. CONVOLUTIONAL NEURAL NETWORK ALGORITHM

