

e-ISSN:2582-7219

 INTERNATIONAL JOURNAL OF

 MULTIDISCIPLINARY RESEARCH

 IN SCIENCE, ENGINEERING AND TECHNOLOGY

Volume 7, Issue 10, October 2024

Impact Factor: 7.521

6381 907 438 6381 907 438 ijmrset@gmail.com @ www.ijmrset.com

© 2024 IJMRSET | Volume 7, Issue 10, October 2024| DOI: 10.15680/IJMRSET.2024.0710054

IJMRSET © 2024 | An ISO 9001:2008 Certified Journal | 15973

String Pattern Matching Algorithms and Comparison

Priya S, Nikitha G, Chaitra A R

Assistant Professor, Department of Computer Science & Applications, The Oxford College of Science,

Bangalore, India

MSc Student, Department of Computer Science & Applications, The Oxford College of Science, Bangalore, India

MSc Student, Department of Computer Science & Applications, The Oxford College of Science, Bangalore, India

ABSTRACT: String pattern matching is a fundamental problem in computer science, with applications ranging from
text processing and data retrieval to bioinformatics and cybersecurity. This paper explores various string pattern matching
algorithms, focusing on their methodologies, efficiency, and use cases. Through a comparative analysis, we can get the
between these algorithms in terms of preprocessing time, space complexity, and performance in different contexts. The
choice of an optimal algorithm depends on factors such as pattern length, alphabet size, and the nature of the text, making
the understanding of these algorithms crucial for efficient string processing in diverse applications.

KEY ALGORITHMS: Knuth-Morris-Pratt (KMP), Boyer-Moore, Horspool algorithm.

I. INTRODUCTION

 String pattern matching is a fundamental concept in computer science and programming, used to find occurrences of
a substring (pattern) within a larger string (text).
 Pattern matching is the process of checking a perceived sequence of string for the presence of the constituents of some
pattern. The patterns generally have the form sequences of pattern matching include outputting the locations of a within
a string sequence, to output some component of the matched pattern, and to substitute the matching pattern with some
other string sequence (i.e., search and replace).
These are the algorithms used for pattern searching
1. Horspool’s String Search Algorithm
2. Knuth–Morris–Pratt algorithm
3. Boyer–Moore string search algorithm

1. Basic Concepts
 String: A sequence of characters. For example, "hello world" is a string.
 Pattern: A substring or a specific sequence of characters that you want to find within the main string.
 Regular Expressions: Regular expressions (regex) are a powerful tool for pattern matching that allow you to define

complex search patterns using special syntax. They are widely used in programming languages, text editors, and
command-line tools.

II. ALGORITHMS

1. Horspool Algorithm:

 Horspool’s algorithm is an optimization of the Boyer-Moore string search algorithm. It improves model performance
by using a simplified version of the Boyer-Moore method. The main idea is to reduce the number of comparisons required
by cutting parts of the text that do not match the pattern.

Preprocessing: Horspool algorithm uses only Bad Character Table
Bad Character table: The Horspool algorithm depends on the bad character table of the Boyer-Moore algorithm. This
algorithm creates a table that maps each character in the pattern to its last occurrence index. If a mismatch occurs, the
table tells how far to shift the pattern based on the mismatched character.

© 2024 IJMRSET | Volume 7, Issue 10, October 2024| DOI: 10.15680/IJMRSET.2024.0710054

IJMRSET © 2024 | An ISO 9001:2008 Certified Journal | 15974

Algorithm:

FUNCTION Horspool(text, pattern):
 m = length(pattern)
 n = length(text)

 if m = 0 then
 return 0
 for each character c in alphabet:
 shift[c] = m
 end for

 for i from 0 to m - 2:
 shift[pattern[i]] = m - 1 - i
 end for

 s = 0
 while s <= n - m:
 j = m - 1
 while j >= 0 and pattern[j] = text[s + j]:
 j = j - 1
 if j < 0 then
 return s
 s = s + shift[text[s + m - 1]]
 end while
 return -1

Time Complexity: Space Complexity: O(k)

Best: O(n/m)
Average: O(n)
Worst: O(n⋅m)
 n = length(text)
 m = length(pattern)

Example:

© 2024 IJMRSET | Volume 7, Issue 10, October 2024| DOI: 10.15680/IJMRSET.2024.0710054

IJMRSET © 2024 | An ISO 9001:2008 Certified Journal | 15975

2. Knuth–Morris–Pratt algorithm: The Knuth-Morris-Pratt (KMP) algorithm for string pattern matching. It efficiently
searches for occurrences of a "pattern" string within a "text" string by preprocessing the pattern to allow the search to
skip over portions of the text that have already been matched. The task is to print all indexes of occurrences of pattern
string in the text string.

Algorithm:

define variables:
int j ← 0 (the position of the current character in S)
int k ← 0 (the position of the current character in W)
an array of integers, T (the table, computed elsewhere)
let nP ← 0
while j < length(S) do
if W[k] = S[j] then
let j ← j + 1
let k ← k + 1
if k = length(W) then
let P[nP] ← j – k
 nP ← nP + 1
let k ← T[k]
else
let k ← T[k]
if k < 0 then
let j ← j + 1
let k ← k + 1

Time Complexity Space Complexity :- O(m).
Preprocessing Time : O(m)
Running Time : O(m+n)
 n = length(text)
 m = length(pattern)

Example :-

© 2024 IJMRSET | Volume 7, Issue 10, October 2024| DOI: 10.15680/IJMRSET.2024.0710054

IJMRSET © 2024 | An ISO 9001:2008 Certified Journal | 15976

3. Boyer–Moore string search algorithm:
 It is a particularly efficient string searching algorithm. The algorithm preprocesses the target string (key) that is being
searched for, but not the string being searched in. Generally the algorithm gets faster as the key being searched for
becomes longer. Its efficiency derives from the fact that with each unsuccessful attempt to find a match between the
search string and the text it is searching. The Boyer Moore algorithm does preprocessing and processes the pattern and
creates different arrays for both heuristics. At every step, it slides the pattern by the max of the slides suggested by the
two heuristics. So it uses best of the two heuristics at every step. Unlike the previous pattern searching algorithms, Boyer
Moore algorithm starts matching from the last character of the pattern.

preprocessing : The algorithm preprocesses the pattern to create two tables:
 Bad Character Table: This tells how far to shift the pattern when a mis match occurs based on the last occurance

of the mismatched character in the pattern.
 Good Suffix Table: This indicated how to shift the pattern when a mismatch happens, based on the matched suffix

of the pattern.

Algorithm:

FUNCTION BoyerMoore(text, pattern):
 n = length(text)
 m = length(pattern)
 if m = 0 then
 return 0 // match found at index 0
 for each character c in alphabet:
 badcharshift[c] = -1 // default shift is -1 (not found)
 end for
 for i from 0 to m - 1:
 badcharshift[pattern[i]] = i
 end for
 // start searching
 s = 0
 while s <= n - m:
 j = m - 1
 while j >= 0 and pattern[j] = text[s + j]:
 j = j - 1
 if j < 0 then
 return s // match found at index s
 s = s + max(1, j - badcharshift[text[s + j]])
 return -1 // no match found

© 2024 IJMRSET | Volume 7, Issue 10, October 2024| DOI: 10.15680/IJMRSET.2024.0710054

IJMRSET © 2024 | An ISO 9001:2008 Certified Journal | 15977

Example:
Let us consider searching for the pattern “BAOBAB” in a text “BESS_KNEW_ABOUT_BAOBABS” made of English
letters and spaces(_)

III. COMPARISION FOR THE BEST ALGORITHM

Comparing these four algorithms:

Algorithm Space Complexity Time Complexity
Best Case Worst Case

Horspool Algorithm O (k) O(n/m) O(n*m)

Knuth–Morris–Pratt
algorithm

O (m) O(m) O(n+m)

Boyer–Moore string
search algorithm

O (m) O(n/m) O(n*m)

© 2024 IJMRSET | Volume 7, Issue 10, October 2024| DOI: 10.15680/IJMRSET.2024.0710054

IJMRSET © 2024 | An ISO 9001:2008 Certified Journal | 15978

1. Horspool’s String Search Algorithm
This algorithm uses a bad character heuristic, which means it shifts the pattern along the text based on the mismatched
character.
 Time Complexity: O(n*m) in the worst case, but O(n/m) on average.
 Efficiency: More efficient than the naive approach, especially for large texts.
 Pros: Better average-case performance than naive, uses a bad-character heuristic.
 Cons: Not as fast as some other advanced algorithms.

2. Knuth–Morris–Pratt algorithm
This algorithm uses a lookup table to store the longest prefix that is also a suffix for each substring of the pattern.
 Time Complexity: O(n + m), making it more efficient than the previous two algorithms.
 Efficiency: Very efficient, especially for large texts and patterns.
 Pros: Efficient for all cases due to preprocessing of the pattern, no backtracking.
 Cons: More complex to implement due to the preprocessing step.

3. Boyer–Moore string search algorithm
This algorithm uses a combination of bad character and good suffix heuristics to shift the pattern along the text.
 Time Complexity: O(n/m) on average, making it one of the most efficient string search algorithms.
 Efficiency: Very efficient, especially for large texts and patterns.
 Pros: Very efficient for large alphabets and long patterns due to its use of two heuristics (bad character and good

suffix).
 Cons: Requires more preprocessing time and space.

Which is the best?
The best string searching algorithm depends on the specific context and requirements of your application, such as the
size of the text and pattern, frequency of searches, and the types of characters involved.

Based on the time complexities and efficiencies, we can consider Boyer–Moore string search algorithm as the best
option. It has an average time complexity of O(n/m), making it very efficient for large texts and patterns. However, it's
worth noting that the Knuth–Morris–Pratt algorithm is also very efficient and may be a better choice in certain situations.

REFERENCES

1. introduction-to-the-design-and-analysis-of-algorithms-3rd-ed.-levitin-2011-10-09
2. References papers - String matching algorithms and their comparison (June 2020)
3. "An Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

This book covers basic algorithms including the naive pattern matching approach.
4. L. Otero-Cerdeira, F. J. Rodriguez-Martinez, and A. GÃ¸smez-Rodriguez,"Ontology matching: A literature review,"

Expert Systems with Applications, vol. 42, no. 2, pp. 949-971, 2015.
5. S. Faro and T. Lecroq, "The Exact Online String Matching Problem:A Review of the Most Recent Results," (in

English), Acm Computing.Surveys, vol. 45, no. 2, Feb 2013.
6. G. F. Ahmed and N. Khare, " Hardware based String Matching Algorithms: A Survey," International Journal of

Computer Applications, vol.88,no. 11, pp. 16-19, 2014.
7. Gonçalves, J., & Barbosa, L. (2020). A Comprehensive Survey on String Matching Algorithms and Their

Applications.
8. Zhang, Y., Wang, Y., & Yu, Y. (2020). An Improved Knuth-Morris-Pratt Algorithm for String Matching.
9. Müller, H., & Böhm, K. (2020). Approximate String Matching Algorithms: A Review and Performance Evaluation.
10. Alam, M. S., & Sultana, A. (2021). A Comparative Analysis of String Matching Algorithms: KMP, Boyer-Moore,

and Rabin-Karp.
11. Zhao, W., & Zhang, Y. (2021). Fast String Matching with Multiple Patterns Using a Suffix Tree.

INTERNATIONAL JOURNAL OF

MULTIDISCIPLINARY RESEARCH
IN SCIENCE, ENGINEERING AND TECHNOLOGY

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com |

www.ijmrset.com

mailto:ijmrset@gmail.com
http://www.ijmrset.com/

